ESc 101: Fundamentals of Computing

Lecture 8

Jan 18, 2010

Computing Factorial

```
main()
{
    int factorial; /* stores n! */
printf("Enter a number: ");
scanf("%d", &n); /* Read the number n */
/* Calculate n! */
for (factorial = 1; n > 0; n = n - 1)
    factorial = factorial * n;
printf("%d", n);
printf("! = ");
printf("%d\n", factorial);
}
```

 int n; /* number whose factorial is to be computed */

Overflowing Values

- Since int type can store numbers up to $2^{31}-1$ only, the value of the factorial is wrongly calculated for $n>12$.
- This is rather limiting, and we need to find a way to get around this.
- We will develop C programs to implement arithmetic with large numbers soon.

Back to Machine Language Code Program

```
main()
{
    int i;
    int instruction; /* stores a symbol */
    instruction = (int) getchar(); /* read first symbol */
    /* Run through all the symbols of the input */
for (; instruction != EOF; ) {
```


Back to Machine Language Code Program

```
    /* For a symbol, output its binary sequence */
    for (i = 0; i < 8; i++) {
    if (instruction < 128) /* the msb is 0 */
        printf("0");
    else { /* the msb is 1 */
        printf("1");
        instruction = instruction - 128; /* make msb 0 */
    }
    /* make 2nd msb the new msb */
    instruction = instruction * 2;
    }
    printf("\n");
    /* read next symbol */
    instruction = (int) getchar();
}
```

\}

Arithmetic Expressions

Uses the following operations: +, $, *, /, \%,++,--$
The precedence is ensured by (and).

Arithmetic Expressions

Examples:

- $\mathrm{n}+\mathrm{m} * 5 /(\mathrm{a}+\mathrm{b}) \% 44$
- ($\mathrm{n}+(\mathrm{m} * 5) /(\mathrm{a}+\mathrm{b})) \% 44$

